10兆美元商機的無人車革命

記者/詹子嫻 攝影/蔡仁譯・吳晴中 美術・插畫/翁羽汝

無人車在產業界甚至是民眾心中,從未像現今一樣熱情澎湃,就連義大利帕爾馬大學研發的無人車VisLab,在2010年完成歐亞長征測試,從義大利開進上海世博會,也不像現在這般受到關注。現在,汽車產業甚至是科技產業最大、最有看頭的革命號角已經正式響起。

為什麼說這是最有看頭的盛宴?《數位時代》盤點投入自動駕駛的公司,至少就有九大領域、超過60家的業者分頭搶進,包括網路公司Google旗下的Waymo、百度、車廠如Tesla、Toyota、IT公司蘋果、晶片巨頭NVIDIA,以及各種新創公司如Uber、Lyft、Zoox等全都就位,連剛落幕的美國消費性電子展(CES)彷彿也成了賣車展示中心,所有人談的都脫離不了自動駕駛及人工智慧。

而勇夫齊聚相中的就是重金。全球車輛產業一年大約銷售8,800多萬輛,每年增長率只有2到3%,加上共享經濟當道,千禧年世代對購車的興趣明顯下滑,讓產業維持溫和成長。但這個狀況並不阻礙產業發展,知名顧問公司麥肯錫指出,儘管全球汽車產業的銷售量沒有太大成長,分享式移動(shared mobility)、數據的連結、服務以及功能升級,將帶動汽車產業在2030年的市場規模額外增加30%,多出了1.5兆美元的龐大商機。

「過去很難用電腦協助汽車產業提升價值,但現在汽車也要有感知、推理能力,這是一個整體產值高達10兆美元的產業,遠比電腦產業大太多。」 NVIDIA創辦人黃仁勳一語道破。

商機從何而來?因為無人車是一個涉及眾多領域、複雜技術的體現。「要長眼睛,有腦袋,還要手腳靈活、會溝通。」車輛研究測試中心研究發展處協理陳良忠比喻,要做到無人車,就必須做到這四件事。首先,利用各種的感測技術、影像鏡頭,進行感測融合(Sensor Fushion),讓車子達到具有眼睛的功能。關於這個部分,產業已發展一段時間,像是利用超音波或毫米波雷達來倒車,但這對無人車還不足夠,因此Google的無人車利用了雷射雷達(LiDAR),Mobileye也是以影像辨識技術領先而聞名。

無人車是多種技術的綜合體現

有大腦,指的就是人工智慧。實際的道路上是由諸多複雜的情境構成,辨識物體後要能知道這是行人、哪種車、道路標示、號誌,電腦進而做出對應的安全駕駛決策,這全都得仰賴人工智慧,所以必須透過龐大的數據資料訓練機器,建立起模型。

對於人工智慧的期待還不止如此,Toyota資深副總裁卡特(Bob Carter)認為:「我們知道人工智慧很重要,但人類優先更重要,因此我們會將重點放在駕駛與車的『關係』上。」Toyota在CES上展示的概念車Concept愛i內建了一個取名為「Yui」的人工智慧,它會學習駕駛的生活風格、了解駕駛的情緒,成為車主的「夥伴」(team mate)。

正因人工智慧扮演著大腦的重要角色,吸引眾多業者投入研究,不過儘管AlphaGo打敗了人類棋王,「但機器還是不會思考的,那只是算出機率。」研究自動駕駛技術的交大電子工程系教授郭峻因直言。因此要讓車子本身能像人類一樣應付馬路上各種突如其來的狀況,還有很大的研發空間,聽了知名車廠Renault-Nissan舉的例子就能了解,Renault-Nissan的自動駕駛技術是與NASA合作,在路上測試自駕車時,意外地遇到了施工,前方的施工人員指示駕駛可以穿越紅燈直行,但是自駕車卻不動了,因為系統的演算法設定是不准闖紅燈,這個對人類來說看似簡單的狀況,車子卻無法轉換思考。所以Renault-Nissan表示,光靠人工智慧不夠,還要有專人協助,當有自駕車不能決定的狀況,可以發送訊號給後端雲端中心,專人將依照現況給車子最新的路線。

另外,會溝通這部分又包括兩個層面,一是與駕駛的溝通,另外則是車子與其他事物的溝通。在與駕駛的溝通方面,語音助理成了主要的一環,亞馬遜的Alexa、Google Assistant、微軟的Cortana成為大熱門,一線車廠紛紛將此技術導入車內。 微軟大中華區企業服務部首席技術長殷皓就表示,現在「辦公」的元素很少能放到車子裡,但未來人不做駕駛了,情況就會改變。這代表的是自動駕駛汽車將與生產力、工作相關的應用結合,微軟的Cortana語音助理就是一例,能跟行事曆整合,提醒你任何大小事。另外,當進入到完全自動駕駛的階段,方向盤可以收合起來,以桌子取代之,回覆Email、打開電腦做簡報都是被允許的,對一般員工來說或許不是件樂事,但恐怕也只能接受。

在與其他事物溝通方面,則要仰賴車聯網(IoV)技術,包括車對車(V2V)、車對號誌等基礎建設(V2I),車對雲端中心等,因此車輛必須擁有4G/5G以及專屬短距通訊(DSRC)等通訊能力。有了眼睛、腦袋、會溝通,最後還要手腳靈活,指的就是高性能的運算能力。隨著半導體的製程演進,晶片縮小但運算能力持續增加,讓系統處理大量的影像、圖資資料、人工智慧運作得以效率提升。

要進入無人車時代除了得有相關技術配合,部分國家基於提升安全的原則,也制定相關法規,讓車輛循序地往智慧化駛去,例如美國運輸部(DOT)在去年底擬定草案,五年後所有新車都將強制配備防止撞車的V2V裝置。另外,日本國土交通省在去年通過新的汽車安全規定,放寬四輪以上汽車的電子後視鏡的安裝規定,而電子後視鏡是利用攝影鏡頭與顯示系統來取代傳統的後照鏡,有助於減少死角。

更早一點,歐盟新車安全評鑑協會(Euro NCAP)也將自動緊急煞車(AEB)系統列為車款安全評比的測試項目,車廠為了提升消費者對品牌的信任度,無不跟進搭載AEB,而台灣也預計在2019年執行大車的AEB法規。

上述的V2V、AEB等功能都是無人車必備,所以「商機大到事情做不完,每個人都有事做。」工研院IEK智慧車輛與系統研究部研究經理石育賢生動地說,因此車輛產業正迎來生機蓬勃的氣氛。

無人車前景一片看好,不過,還涉及配套的法律增修及都市規畫方案,要普及於市場需逐步演進,特別是無人車要如何給人安全及信賴感?涉及道德議題時該如何抉擇?這都是影響產業發展速度的因素,例如當意外發生,車輛必須選擇撞山/落海,或是撞上一位孩童時,電腦系統該怎麼選?Toyota旗下的智慧研究機構(TRI)執行長普瑞特(Gill A. Pratt)就提出一個很好的問題:「怎樣的安全是足夠的安全?至今,沒有人有答案。」

這些超越技術層次的難題,將是所有人必須面對的。這一場革命已經鳴槍,向前奔跑已無法回頭,但是,無人車的下一階段是什麼?會如何演變?或許在你我等著準備享受它帶來的新體驗前,值得放慢腳步來思考。

圖文ˋ摘自:數位時代 Issue 273